Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Dental disorders are common worldwide, causing pain or infections and limiting mouth opening, so dental conditions impact productivity, work capability, and quality of life. Manual detection and classification of oral diseases is time-consuming and requires dentists’ evaluation and examination. The dental disease detection and classification system based on machine learning and deep learning will aid in early dental disease diagnosis. Hence, this paper proposes a new diagnosis system for dental diseases using X-ray imaging. The framework includes a robust pre-processing phase that uses image normalization and adaptive histogram equalization to improve image quality and reduce variation. A dual-stream approach is used for feature extraction, utilizing the advantages of Swin Transformer for capturing long-range dependencies and global context and MobileNetV2 for effective local feature extraction. A thorough representation of dental anomalies is produced by fusing the extracted features. To obtain reliable and broadly applicable classification results, a bagging ensemble classifier is utilized in the end. We evaluate our model on a benchmark dental radiography dataset. The experimental results and comparisons show the superiority of the proposed system with 95.7% for precision, 95.4% for sensitivity, 95.7% for specificity, 95.5% for Dice similarity coefficient, and 95.6% for accuracy. The results demonstrate the effectiveness of our hybrid model integrating MoileNetv2 and Swin Transformer architectures, outperforming state-of-the-art techniques in classifying dental diseases using dental panoramic X-ray imaging. This framework presents a promising method for robustly and accurately diagnosing dental diseases automatically, which may help dentists plan treatments and identify dental diseases early on.
Dental disorders are common worldwide, causing pain or infections and limiting mouth opening, so dental conditions impact productivity, work capability, and quality of life. Manual detection and classification of oral diseases is time-consuming and requires dentists’ evaluation and examination. The dental disease detection and classification system based on machine learning and deep learning will aid in early dental disease diagnosis. Hence, this paper proposes a new diagnosis system for dental diseases using X-ray imaging. The framework includes a robust pre-processing phase that uses image normalization and adaptive histogram equalization to improve image quality and reduce variation. A dual-stream approach is used for feature extraction, utilizing the advantages of Swin Transformer for capturing long-range dependencies and global context and MobileNetV2 for effective local feature extraction. A thorough representation of dental anomalies is produced by fusing the extracted features. To obtain reliable and broadly applicable classification results, a bagging ensemble classifier is utilized in the end. We evaluate our model on a benchmark dental radiography dataset. The experimental results and comparisons show the superiority of the proposed system with 95.7% for precision, 95.4% for sensitivity, 95.7% for specificity, 95.5% for Dice similarity coefficient, and 95.6% for accuracy. The results demonstrate the effectiveness of our hybrid model integrating MoileNetv2 and Swin Transformer architectures, outperforming state-of-the-art techniques in classifying dental diseases using dental panoramic X-ray imaging. This framework presents a promising method for robustly and accurately diagnosing dental diseases automatically, which may help dentists plan treatments and identify dental diseases early on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.