The substantial value held by smart contracts (SCs) makes them an enticing target for malicious attacks. The process of fixing vulnerabilities in SCs is intricate, primarily due to the immutability of blockchain technology. This research paper introduces a systematic literature review (SLR) that evaluates rectification systems designed to patch vulnerabilities in SCs. Following the guidelines set forth by the PRISMA statement, this SLR meticulously reviews a total of 31 papers. In this context, we classify recently published SC automated repair frameworks based on their methodologies for automatic program repair (APR), rewriting strategies, and tools for vulnerability detection. We argue that automated patching enhances the reliability and adoption of SCs, thereby allowing developers to promptly address identified vulnerabilities. Furthermore, existing automated repair tools are capable of addressing only a restricted range of vulnerabilities, and in some cases, patches may not be effective in preventing the targeted vulnerabilities. Another key point that should be taken into account is the simplicity of the patch and the gas consumption of the modified program. Alternatively, large language models (LLMs) have opened new avenues for automatic patch generation, and their performance can be improved by innovative methodologies.