To investigate the association between physical activity (including active travel modes) and environmental factors, much research has estimated contextual influences based on zones or areas delineated with buffer analysis. However, few studies to date have examined the effects of different buffer sizes on estimates of individuals’ dynamic exposures along their daily trips recorded as GPS trajectories. Thus, using a 7-day GPS dataset collected in the Chicago Regional Household Travel Inventory (CRHTI) Survey, this study addresses the methodological issue of how the associations between environmental contexts and active travel modes (ATMs) as a subset of physical activity vary with GPS-based buffer size. The results indicate that buffer size influences such associations and the significance levels of the seven environmental factors selected as predictors. Further, the findings on the effects of buffer size on such associations and the significance levels are clearly different between the ATMs of walking and biking. Such evidence of the existence of buffer-size effects for multiple environmental factors not only confirms the importance of the uncertain geographic context problem (UGCoP) but provides a resounding cautionary note to all future research on human mobility involving individuals’ GPS trajectories, including studies on physical activity and travel behaviors, especially on the reliable estimation of individual exposures to environmental factors and their health outcomes.