One of a very significant computer vision task in many real-world applications is traffic sign recognition. With the development of deep neural networks, state-of-art performance traffic sign recognition has been provided in recent five years. Getting very high accuracy in object classification is not a dream any more. However, one of the key challenges is becoming making the deep neural network suitable for an embedded system. As a result, a small neural network with as less parameters as possible and high accuracy needs to be explored. In this paper, the MicronNet which is a small but powerful convolutional neural network is improved by batch normalization and factorization, and the proposed MicronNet-BN-Factorization (MicronNet-BF) takes advantages about reducing parameters and improving accuracy. The effect of image brightness is reduced for feature recognition by the elimination of mean and variance of each input layer in MicronNet via BN. A lower number of parameters are realized with the replacement of convolutional layers in MicronNet, which is the inspiration of factorization. In addition, data augmentation is also been changed to get higher accuracy. Most important, the experiment shows that the accuracy of MicronNet-BF is 99.383% on German traffic sign recognition benchmark (GTSRB) which is much higher than the original MicronNet (98.9%), and the most influence factor is batch normalization after the confirmation of orthogonal experimental. Furthermore, the handsome training efficiency and generality of MicronNet-BF indicate the wide application in embedded scenarios.