2015
DOI: 10.1155/2015/493142
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Side-Scan Sonar Image Enhancement in Curvelet Transform Domain

Abstract: We propose a novel automatic side-scan sonar image enhancement algorithm based on curvelet transform. The proposed algorithm uses the curvelet transform to construct a multichannel enhancement structure based on human visual system (HVS) and adopts a new adaptive nonlinear mapping scheme to modify the curvelet transform coefficients in each channel independently and automatically. Firstly, the noisy and low-contrast sonar image is decomposed into a low frequency channel and a series of high frequency channels … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(6 citation statements)
references
References 26 publications
0
5
0
1
Order By: Relevance
“…CVT and NSCT are not optimised to sonar image. However, since they have been widely used methods for image processing [8–14, 25, 26], we introduce them into the comparison method.…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…CVT and NSCT are not optimised to sonar image. However, since they have been widely used methods for image processing [8–14, 25, 26], we introduce them into the comparison method.…”
Section: Resultsmentioning
confidence: 99%
“…The CVT [8–11] is a multi‐scale geometric WT, can represent edge features and curve singularities much more efficiently than classical WT. Fig.…”
Section: Image Enhancement Based On Cvtmentioning
confidence: 99%
See 1 more Smart Citation
“…PSNR is utilised as the performance measure. Zhou et al [19] presented a novel image enhancement algorithm based on curvelet transform for sonar images. The curvelet transform constructs multi-channel enhancement structure based on (HVS) human visual system.…”
Section: Related Workmentioning
confidence: 99%
“…En la literatura de lasúltimas décadas, se han introducido numerosas alternativas de pre-procesamiento para eliminar el ruido speckle y mejorar el contraste de imágenes de SSS que abarcan diferentes niveles de complejidad que influyen notablemente en su etapa posterior de post-procesamiento, como por ejemplo en la detección y reconocimiento de objetos [6], [7]. Entre los métodos de pre-procesamiento de imágenes acústicas se encuentran el método variacional (variational approach) [8], representación escasa (sparse representation) [9], corrección de histograma (histogram Correction) [10] y estiramiento no lineal (nonlinear stretching) [11], transformada Curvelente (curvelent transform) [12], transformada Wavelet (wavelet transform), entre otros [13]. Los métodos detallados implican numerosos pasos secuenciales, utilizan técnicas combinadas, procedimientos complejos iterativos, establecen umbrales o parámetros subjetivos y además, requieren frecuentemente una cierta cantidad de información previa para obtener una imagen resultante de calidad.…”
Section: Introductionunclassified