2015
DOI: 10.4172/2155-9821.1000216
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Sleep Stage Detection and Classification: Distinguishing Between Patients with Periodic Limb Movements, Sleep Apnea Hypopnea Syndrome, and Healthy Controls Using Electrooculography (EOG) Signals

Abstract: Background: To improve the diagnostic and clinical treatment of sleep disorders, the first important step is to identify or detect the sleep stages. Utilizing the conventional method-known as visual sleep stage scoring-is tedious and time-consuming. Therefore, there is a significant need to create or develop a new automatic sleep stage detection system to assist the sleep physician in evaluating the sleep stages of patients or non-patient subjects. The first aim of this study is to develop an algorithm for aut… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2019
2019

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance