In the context of big data and the 4.0 industrial revolution era, enhancing document/information retrieval frameworks efficiency to handle the ever‐growing volume of text data in an ever more digital world is a must. This article describes a double-stage system of document/information retrieval. First, a Lucene-based document retrieval tool is implemented, and a couple of query expansion techniques using a comparable corpus (Wikipedia) and word embeddings are proposed and tested. Second, a retention-fidelity summarization protocol is performed on top of the retrieved documents to create a short, accurate, and fluent extract of a longer retrieved single document (or a set of top retrieved documents). Obtained results show that using word embeddings is an excellent way to achieve higher precision rates and retrieve more accurate documents. Also, obtained summaries satisfy the retention and fidelity criteria of relevant summaries.