Within the European Project Telfona the Pathfinder Model was designed, analyzed numerically, constructed and tested with the aim of obtaining a laminar flow testing capability in the European Transonic Wind Tunnel (ETW). The model was designed for natural laminar flow (NLF) for transonic flow conditions with high Reynolds number.Results of pre-test numerical analysis demonstrated that the Pathfinder wing pressure distribution was adequate for providing calibration test points. The ETW tests provided pressure distribution data while transition positions were determined from images using the Cryogenic Temperature Sensitive Paint Method (cryoTSP). The evaluation of this data with several transition prediction tools was used to establish the transition N-factor values for ETW. In this work, after-test CFD solutions are obtained using numerical Navier-Stokes solutions. In the first part of this work, numerical results are given which verify the requirements of the Pathfinder wing as a calibration model. In the second part, it is shown that for selected flow conditions a good agreement is obtained between stability analysis based on experimental and numerical data. In the third part the correlation of experimental transition locations to critical N-factors is summarized for ETW Test Phases I and II. In the fourth part numerical analysis and experimental data are used complementarily.