2020
DOI: 10.5194/isprs-archives-xliii-b3-2020-767-2020
|View full text |Cite
|
Sign up to set email alerts
|

Automatically Generated Training Data for Land Cover Classification With CNNS Using Sentinel-2 Images

Abstract: Abstract. Pixel-wise classification of remote sensing imagery is highly interesting for tasks like land cover classification or change detection. The acquisition of large training data sets for these tasks is challenging, but necessary to obtain good results with deep learning algorithms such as convolutional neural networks (CNN). In this paper we present a method for the automatic generation of a large amount of training data by combining satellite imagery with reference data from an available geospatial dat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance