“…In most of them, the idea comes from the assumption that the first processing stage performs a rough detection of objects of interest, while the second one applies more precise means to improve the identification accuracy [25]. In many papers, the two-stage approach is related to the integration of features (e.g., appearance and spatio-temporal HOGs [26], difference-of-Gaussians and accumulated gradient projection vector [27], entropy of local histograms and heuristic features [28], edge information and SIFT features [29]), combining classifiers (e.g., SVM and random sample consensus-RANSAC [30], two stages of mean-shift clustering [31]), mixed approaches (e.g., Hough transform joined with DBSCAN clustering [32], edge map and SVM [33], HOG and SVM [34], two variants of snakes [35], particle swarm optimization and fuzzy classifier [36]). …”