The process of drilling an oil or gas well is inherently challenging due to the unpredictable nature of many of the variables at play. However, the overall process can be broken down into many smaller phases, each of which has a signature of repeatability. By automating the repeatable processes, and by optimizing the inputs that are a function of variable conditions, we can industrialize the drilling process at a higher level and drive toward consistent, high performance. Improving operational inefficiency requires long-term training or special tools to help address downhole issues. This can be costly and requires many man hours. In the pilot reviewed in this paper, a Surface Automation Solution was implemented to improve well construction performance. The Surface Automation Solution was comprised of a Drilling Automation Platform (DAP), a real-time Intelligent Drilling Optimizer (IDO), an automated stick slip mitigation system, and Automation Lifecycle Management (ALM) supporting services.
The Surface Automation Solution showed extraordinary performance, delivering efficient drilling connections, optimum drilling performance and mitigating drilling dysfunction. New records were achieved in every hole section where the system was operated, resulting in 51% overall ROP improvement compared to offsets, and 44% reduction in stick slip severity, translating to 3.2 rig days savings.
In this paper, we will examine how the Surface Automation Solution saves well delivery time by automating drilling activities, mitigating drilling dysfunctions and optimizing parameters to increase ROP on each section. The outcome is measured by the performance, which in this case is time saved. The data shown is the overall macro key performance indicator (KPI) along with the performance at each individual hole section.