Radiomics-based prediction models have shown promise in predicting Radiation Pneumonitis (RP), a common adverse outcome of chest irradiation. Τhis study looks into more than just RP: it also investigates a bigger shift in the way radiomics-based models work. By integrating multi-modal radiomic data, which includes a wide range of variables collected from medical images including cutting-edge PET/CT imaging, we have developed predictive models that capture the intricate nature of illness progression. Radiomic features were extracted using PyRadiomics, encompassing intensity, texture, and shape measures. The high-dimensional dataset formed the basis for our predictive models, primarily Gradient Boosting Machines (GBM) – XGBoost, LightGBM, and CatBoost. Performance evaluation metrics, including Multi-Modal AUC-ROC, Sensitivity, Specificity, and F1-Score, underscore the superiority of the Deep Neural Network (DNN) model. The DNN achieved a remarkable Multi-Modal AUC-ROC of 0.90, indicating superior discriminatory power. Sensitivity and specificity values of 0.85 and 0.91, respectively, highlight its effectiveness in detecting positive occurrences while accurately identifying negatives. External validation datasets, comprising retrospective patient data and a heterogeneous patient population, validate the robustness and generalizability of our models. The focus of our study is the application of sophisticated model interpretability methods, namely SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic Explanations), to improve the clarity and understanding of predictions. These methods allow clinicians to visualize the effects of features and provide localized explanations for every prediction, enhancing the comprehensibility of the model. This strengthens trust and collaboration between computational technologies and medical competence. The integration of data-driven analytics and medical domain expertise represents a significant shift in the profession, advancing us from analyzing pixel-level information to gaining valuable prognostic insights.