Autonomous acquisition of arbitrarily complex skills using locality based graph theoretic features: a syntactic approach to hierarchical reinforcement learning
Abstract:With the growing state/action space, learning a satisfactory policy for regular Reinforcement Learning (RL) algorithms such as flat Q-learning becomes quickly infeasible. One possible solution to handle such cases is to employ hierarchical RL (HRL). In this work, we present two methods to autonomously construct (1) skills (ASKA) and (2) arbitrarily elaborate superskills or complexes through defining an arbitrary number of hierarchies in HRL (ASKAC) over a graph-based iteratively-growing environment model. We e… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.