2023
DOI: 10.1007/s12530-022-09478-6
|View full text |Cite
|
Sign up to set email alerts
|

Autonomous acquisition of arbitrarily complex skills using locality based graph theoretic features: a syntactic approach to hierarchical reinforcement learning

Abstract: With the growing state/action space, learning a satisfactory policy for regular Reinforcement Learning (RL) algorithms such as flat Q-learning becomes quickly infeasible. One possible solution to handle such cases is to employ hierarchical RL (HRL). In this work, we present two methods to autonomously construct (1) skills (ASKA) and (2) arbitrarily elaborate superskills or complexes through defining an arbitrary number of hierarchies in HRL (ASKAC) over a graph-based iteratively-growing environment model. We e… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?