Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications V 2023
DOI: 10.1117/12.2663093
|View full text |Cite
|
Sign up to set email alerts
|

Autonomous cyber warfare agents: dynamic reinforcement learning for defensive cyber operations

Abstract: In this work, we aim to develop novel cybersecurity playbooks by exploiting dynamic reinforcement learning (RL) methods to close holes in the attack surface left open by the traditional signature-based approach to Defensive Cyber Operations (DCO). A useful first proof-of-concept is provided by the problem of training a scanning defense agent using RL; as a first line of defense, it is important to protect sensitive networks from network mapping tools. To address this challenge, we developed a hierarchical, Mon… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 21 publications
0
0
0
Order By: Relevance