2024
DOI: 10.1121/10.0026474
|View full text |Cite
|
Sign up to set email alerts
|

Autonomous design of noise-mitigating structures using deep reinforcement learning

Semere B. Gebrekidan,
Steffen Marburg

Abstract: This paper explores the application of deep reinforcement learning for autonomously designing noise-mitigating structures. Specifically, deep Q- and double deep Q-networks are employed to find material distributions that result in broadband noise mitigation for reflection and transmission problems. Unlike conventional deep learning approaches which require prior knowledge for data labeling, the double deep Q-network algorithm learns configurations that result in broadband noise mitigations without prior knowle… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 43 publications
0
0
0
Order By: Relevance