El objetivo general de esta Tesis es mejorar el proceso de la toma de decisiones en la gestión de cadenas de suministro, tomando en cuenta
principalmente dos diferencias: ser competitivo considerando las decisiones propias de la cadena de suministro, y ser competitivo dentro de un entorno global. La estructura de ésta tesis se divide en 4 partes principales:
La Parte I consiste en una introducción general de los temas cubiertos en esta Tesis (Capítulo 1). Una revisión de la literatura, que nos permite identificar las problemáticas asociadas al proceso de toma de decisiones (Capítulo 2). El Capítulo 3 presenta una introducción de las técnicas y métodos de optimización utilizados para resolver los problemas propuestos en esta Tesis.
La Parte II se enfoca en la integración de los niveles de decisión, buscando mejorar la toma de decisiones de la propia cadena de suministro. El Capítulo 4 presenta una formulación matemática que integra las decisiones de síntesis de procesos y las decisiones operacionales. Además, este capítulo presenta un modelo integrado para la toma de decisiones operacionales incluyendo las características del control de procesos. El Capítulo 5 muestra la integración de las decisiones del nivel táctico y el operacional, dicha propuesta está basada en el conocimiento adquirido capturando la información relacionada al nivel operacional. Una vez obtenida esta información se incluye en la toma de decisiones a nivel táctico. Finalmente en el capítulo 6 se desarrolla un modelo simplificado para integrar múltiples cadenas de suministro. El modelo propuesto incluye la información detallada de las entidades presentes en una cadena de suministro (suministradores, plantas de producción, distribuidores y mercados) introduciéndola en un modelo matemático para su coordinación.
La Parte III propone la integración explicita de múltiples cadenas de suministro que tienen que enfrentar numerosas situaciones propias de un mercado global. Asimismo, esta parte presenta una nueva herramienta de optimización basada en el uso integrado de métodos de programación matemática y conceptos relacionados a la Teoría de Juegos. En el Capítulo 7 analiza múltiples cadenas de suministro que cooperan o compiten por la demanda global del mercado. El Capítulo 8 incluye una comparación entre el problema resuelto en el Capítulo anterior y un modelo estocástico, los resultados obtenidos nos permiten situar el comportamiento de los competidores como fuente exógena de la incertidumbre típicamente asociada la demanda del mercado. Además, los resultados de ambos Capítulos muestran una mejora sustancial en el coste total de las cadenas de suministro asociada al hecho de cooperar para atender de forma conjunta la demanda disponible. Es por esto, que el Capítulo 9 presenta una nueva herramienta de negociación, basada en la resolución del mismo problema (Capítulo 7) bajo un análisis multiobjetivo.
Finalmente, la parte IV presenta las conclusiones finales y una descripción general del trabajo futuro.
This Thesis aims to enhance the decision making process in the SCM, remarking the difference between optimizing the SC to be competitive by its own, and to be competitive in a global market in cooperative and competitive environments. The structure of this work has been divided in four main parts:
Part I: consists in a general introduction of the main topics covered in this manuscript (Chapter I); a review of the State of the Art that allows us to identify new open issues in the PSE (Chapter 2). Finally, Chapter 3 introduces the main optimization techniques and methods used in this contribution.
Part II focuses on the integration of decision making levels in order to improve the decision making of a single SC: Chapter 4 presents a novel formulation to integrate synthesis and scheduling decision making models, additionally, this chapter also shows an integrated operational and control decision making model for distributed generations systems (EGS). Chapter 5 shows the integration of tactical and operational decision making levels. In this chapter a knowledge based approach has been developed capturing the information related to the operational decision making level. Then, this information has been included in the tactical decision making model. In Chapter 6 a simplified approach for integrated SCs is developed, the detailed information of the typical production‐distribution SC echelons has been introduced in a coordinated SC model.
Part III proposes the explicit integration of several SC’s decision making in order to face several real market situations. As well, a novel formulation is developed using an MILP model and Game Theory (GT) as a decision making tool. Chapter 7 includes the tactical and operational analysis of several SC’s cooperating or competing for the global market demand. Moreover, Chapter 8 includes a comparison, based on the previous results (MILP‐GT optimization tool) and a two stage stochastic optimization model. Results from both Chapters show how cooperating for the global demand represent an improvement of the overall total cost. Consequently, Chapter 9 presents a bargaining tool obtained by the Multiobjective (MO) resolution of the model presented in Chapter 7.
Finally, final conclusions and further work have been provided in Part IV.