Summary
As the usage of geothermal energy as a zero-emission power resource continues to grow in significance, comprehending the interplay between physical and chemical processes within geothermal reservoirs becomes crucial. In this study, a computationally efficient fluid flow and heat transfer model, combined with a fluid chemistry model, is used to simulate fluid circulation and mineral precipitation in reservoir rock, resulting in changes in rock porosity and permeability. A 2D hybrid approach is employed to solve transient mass and momentum conservation equations, coupled with an analytical solution of the energy equation proposed in the literature for geological formations. A marching algorithm is utilized to calculate velocity and temperature fields in the axial direction within the production zone. Mineral scaling is addressed using the outputs of the hybrid model to perform saturation index (SI) and solution/dissolution computations for qualitative and quantitative mineral precipitation modeling. Multiple criteria are considered to assess the likelihood and intensity of fouling issues. The analysis results are used in an empirical model to estimate rock secondary porosity and permeability changes over a 5-year period of heat extraction. The developed simulator is applied to model a site in the Sabalan geothermal field in Iran, and its initial verification is conducted using data from the same site in the literature. The findings in the study for a sensitivity on fluid circulation rate reveal that increasing water circulation flow rate increases precipitation rate and pumping power required. Furthermore, even minor instances of pore blockage can result in notable reductions in permeability. Consequently, ensuring precise control over pressure and temperature during the production phase becomes progressively crucial for both reservoir integrity and production assurance. The proposed framework provides a promising approach for accurate and efficient simulation of geothermal reservoirs to optimize power generation and minimize environmental impact.