The exploration of remote, unknown, rough environments by autonomous robots strongly depends on the ability of the on-board system to build an accurate predictor of terrain traversability. Terrain traversability prediction can be made more cost efficient by using texture information of 2D images obtained by a monocular camera. In cases where the robot is required to operate on a variety of terrains, it is important to consider that terrains sometimes contain spiky objects that appear as non-uniform in the texture of terrain images. This paper presents an approach to estimate the terrain traversability cost based on terrain non-uniformity detection (TNUD). Terrain images undergo a multiscale analysis to determine whether a terrain is uniform or non-uniform. Terrains are represented using a texture and a motion feature computed from terrain images and acceleration signal, respectively. Both features are then combined to learn independent Gaussian Process (GP) predictors, and consequently, predict vibrations using only image texture features. The proposed approach outperforms conventional methods relying only on image features without utilizing TNUD.