Microbiota is known to interact with metabolic and regulatory networks of the host affecting its fitness. The composition of microbiota was shown to change throughout the host aging. Such changes can be likely caused by aging process or, vice versa, changes in microbiota composition can impact the aging process. It is suggested that microbiota plays an important role in life span determination. Several species from the genus Drosophila, especially D. melanogaster, are powerful models to study many biological processes including microbiota functioning and its effects on the host aging. The host fitness can be substantially affected by endosymbiotic bacteria such as Wolbachia that infects up to two-thirds of insects taxa, including Drosophila. Wolbachia was shown to significantly affect Drosophila aging and life span. However, the molecular mechanisms underlying interactions between Wolbachia and Drosophila remain mostly unknown. In this chapter, we summarize data suggesting that Wolbachia-Drosophila molecular cross-talk associated with life span determination and aging can occur through the immune deficiency pathway, stress-induced JNK pathway, insulin/IGF signaling pathway, ecdysteroid biosynthesis and signaling pathway, as well as through the heat shock and autophagy-specific genes/proteins.