The autophagy process appears as a promising target for anticancer interventions. Chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are the only FDA-approved autophagy flux inhibitors. Although diverse anticancer clinical trials are providing encouraging results, several limitations associated with the need of high dosage and long-term administration of these autophagy inhibitors are also emerging. We showed that the inhibition of REV-ERB, a nuclear receptor regulating circadian rhythm and metabolism, enhances CQ-mediated cancer cell death and identified a class of dual inhibitors of autophagy and REV-ERB displaying an in vitro anticancer activity against diverse tumor cells greatly higher than CQ. Herein, we describe our lead optimization strategy that led to the identification of compound 24 as a dual autophagy and REV-ERB inhibitor, showing improved potency in blocking autophagy, enhanced toxicity against cancer cells, optimal drug-like properties, and efficacy in a mouse xenograft model of melanoma as a single anticancer agent.