The widespread dysregulation that characterizes cancer cells has been dissected and many regulation pathways common to multiple cancer types have been described in depth. Wnt/β-catenin signaling and autophagy are among these principal pathways, which contribute to tumor growth and resistance to anticancer therapies. Currently, several therapeutic strategies that target either Wnt/β-catenin signaling or autophagy are in various stages of development. Targeted therapies that block specific elements that participate in both pathways; are subject to in vitro studies as well as pre-clinical and early clinical trials. Strikingly, drugs designed for other diseases also impact these pathways, which is relevant since they are already FDA-approved and sometimes even routinely used in the clinic. The main focus of this mini-review is to highlight the importance of drug repositioning to inhibit the Wnt/β-catenin and autophagy pathways, with an emphasis on the interplay between them. The data we found strongly suggested that this field is worth further examination.