Background
Development of novel therapeutic approaches for cancer therapy is important, especially for tumors that have poor response or develop resistance to standard chemotherapy and radiation. We discovered that non-invasive radiofrequency (RF) fields can affect cancer, but not normal cells, inhibit progression of tumors in mice, and enhance anticancer effect of chemotherapy. However, it remains unclear what physiological and molecular mechanisms this treatment induces inside cells. Here, we studied the effect of RF treatment on mitochondria in human pancreatic cancer cells.
Methods
Morphology of mitochondria in cells was studied by electron microscopy. Alteration of mitochondrial membrane potential (Δψ) was accessed with Mitotracker probe. Respiratory activity of mitochondria was evaluated by changes in oxygen consumption rates (OCR) determined with MitoStress kit. Production of intracellular reactive oxygen species (ROS) was performed using flow cytometry. Colocalization of mitochondria and autophagosome markers in cells was done by fluorescence immunostaining and confocal microscopy analysis.
Results
RF changed morphology of mitochondria in cancer cells, altered polarization of the mitochondrial membrane, substantially impaired mitochondrial respiration, and increased ROS production, which indicate on the RF-induced stress on mitochondria. We also observed frequent colocalization of the autophagosome marker LC3B with the mitochondrial marker Tom20 inside cancer cells after RF exposure indicating on the presence of mitochondria in the autophagosomes. This suggests that RF-induced stress can damage mitochondria and induce elimination of damaged organelle via autophagy.
Conclusion
RF treatment impaired the function of mitochondria in cancer cells. Therefore, mitochondria can represent one of the targets of the RF treatment.