Among the pathogenic protozoa, trypanosomatids stand out due to their medical and economic impact, especially for low-income populations in tropical countries. Together, sleeping sickness, Chagas disease and leishmaniasis affect millions of humans and animals worldwide, yet are neglected by the pharmaceutical industry. The current drugs for trypanosomatid infections are limited and unsatisfactory, with severe side effects leading to reduced quality of life and, in several instances, to the abandonment of treatment. An intense search for alternative compounds has been performed, aiming at specific parasite targets by cellular, molecular and biochemical approaches. One interesting strategy could be interference with the protozoan cell death pathways. However, these pathways are poorly understood in unicellular eukaryotes, with the controversial existence and uncertain biological relevance of programmed cell death (PCD). This chapter will discuss apoptosis-like and autophagic cell death and necrosis in Trypanosoma brucei, Trypanosoma cruzi and Leishmania sp. and the possible implications of these pathways for the parasite life cycle and infection persistence. It will also revisit the genomic and proteomic metadata of these trypanosomatids in the literature to rebuild the map of cell death proteins expressed under different conditions. The interaction of leading candidates with parasite-specific molecules, especially with enzymes that regulate key steps in the cell death process, is a rational and attractive alternative for drug development for these neglected diseases.