Local vibration can induce vascular injuries, one example is the hand-arm vibration syndrome (HAVS) caused by hand-transmitted vibration (HTV). Little is known about the molecular mechanism of HAVS-induced vascular injuries. Herein, the iTRAQ (isobaric tags for relative and absolute quantitation) followed by liquid chromatography−tandem mass spectrometry (LC−MS/MS) proteomics approach was applied to conduct the quantitative proteomic analysis of plasma from specimens with HTV exposure or HAVS diagnosis. Overall, 726 proteins were identified in iTRAQ. 37 proteins upregulated and 43 downregulated in HAVS. Moreover, 37 upregulated and 40 downregulated when comparing severe HAVS and mild HAVS. Among them, Vinculin (VCL) was found to be downregulated in the whole process of HAVS. The concentration of vinculin was further verified by ELISA, and the results suggested that the proteomics data was reliable. Bioinformative analyses were used, and those proteins mainly engaged in specific biological processes like binding, focal adhesion, and integrins. The potential of vinculin application in HAVS diagnosis was validated by the receiver operating characteristic curve.