The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific population of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits co-assemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed at determining the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization, and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
I. OVERVIEW OF MAMMALIAN BRAIN VOLTAGE-DEPENDENT ION CHANNELS A. IntroductionMammalian central neurons express a large repertoire of voltage-dependent ion channels (VDICs) that form selective pores in the neuronal membrane and confer diverse properties of intrinsic neuronal excitability. This allows mammalian neurons to display a richness of firing behaviors over a wide range of stimuli and firing frequencies. The complex electrical behavior of mammalian neurons is due to a huge array of VDICs with distinct ion flux rates and selectivity, although the major VDICs underlying neuronal excitability and electrical signaling are those selective for Na + , K + and Ca 2+ ions. Neuronal VDICs also exhibit widely differing properties of how sensitive their gating, or the opening or closing of the channels pore, is to changes in membrane potential. Different VDICs also differ in the kinetics of these gating events. Importantly in the terms of mammalian brain, different VDICs differ widely in their cellular expression and subcellular localization, impacting their relative contribution to brain