“…Ashwin and von der Heydt [6] contrast the usual definition of equilibrium climate sensitivity, which relies, as discussed above, on taking a linear approximation to the climate response, with a fully nonlinear version, and aim at studying the behaviour of such quantities in the presence of tipping points in simple climate models. Climate response is investigated on paleoclimatic data by Ahn et al [3] with the goal of understanding whether it is possible to define causal links between differ-ent proxy records as a result of the presence of cross-correlations, and discuss the need for conjecturing the presence of a separate forcing responsible for the observed signals. The problem of predicting climate response to forcings motivates the study by Santos Gutiérrez and Lucarini [109], who provide general formulas for computing linear and nonlinear response to fairly general forcings in the context of finite Markov chains and use them, after performing a discretisation of the phase space, to study the sensitivity of a deterministic and a stochastic dynamical system.…”