2019
DOI: 10.1007/s10955-019-02391-4
|View full text |Cite
|
Sign up to set email alerts
|

Autoregressive Statistical Modeling of a Peru Margin Multi-proxy Holocene Record Shows Correlation Not Causation, Flickering Regimes and Persistence

Abstract: Correlation does not necessarily imply a causation, but in climatology and paleoclimatology, correlation is used to identify potential cause-and-effect relationships because linking mechanisms are difficult to observe. Confounding by an often unknown outside variable that drives the sets of observables is one of the major factors that lead to correlations that are not the result of causation. Here we show how autoregressive (AR) models can be used to examine lead-lag relationships-helpful in assessing cause an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…Ashwin and von der Heydt [6] contrast the usual definition of equilibrium climate sensitivity, which relies, as discussed above, on taking a linear approximation to the climate response, with a fully nonlinear version, and aim at studying the behaviour of such quantities in the presence of tipping points in simple climate models. Climate response is investigated on paleoclimatic data by Ahn et al [3] with the goal of understanding whether it is possible to define causal links between differ-ent proxy records as a result of the presence of cross-correlations, and discuss the need for conjecturing the presence of a separate forcing responsible for the observed signals. The problem of predicting climate response to forcings motivates the study by Santos Gutiérrez and Lucarini [109], who provide general formulas for computing linear and nonlinear response to fairly general forcings in the context of finite Markov chains and use them, after performing a discretisation of the phase space, to study the sensitivity of a deterministic and a stochastic dynamical system.…”
Section: This Special Issuementioning
confidence: 99%
“…Ashwin and von der Heydt [6] contrast the usual definition of equilibrium climate sensitivity, which relies, as discussed above, on taking a linear approximation to the climate response, with a fully nonlinear version, and aim at studying the behaviour of such quantities in the presence of tipping points in simple climate models. Climate response is investigated on paleoclimatic data by Ahn et al [3] with the goal of understanding whether it is possible to define causal links between differ-ent proxy records as a result of the presence of cross-correlations, and discuss the need for conjecturing the presence of a separate forcing responsible for the observed signals. The problem of predicting climate response to forcings motivates the study by Santos Gutiérrez and Lucarini [109], who provide general formulas for computing linear and nonlinear response to fairly general forcings in the context of finite Markov chains and use them, after performing a discretisation of the phase space, to study the sensitivity of a deterministic and a stochastic dynamical system.…”
Section: This Special Issuementioning
confidence: 99%