Intercellular communication within an organism, between populations, or across species and kingdoms forms the basis of many ecosystems in which organisms coexist through symbiotic, parasitic, or predator-prey relationships. Using multistep airborne communication and signal transduction, we present synthetic ecosystems within a mammalian cell population, in mice, or across species and kingdoms. Inter-and intrakingdom communication was enabled by using sender cells that produce volatile aldehydes, small vitamin-derived molecules, or antibiotics that diffuse, by gas or liquid phase, to receiver cells and induce the expression of specific target genes. Intercellular and cross-kingdom communication was shown to enable quorum sensing between and among mammalian cells, bacteria, yeast, and plants, resulting in precise spatiotemporal control of IFN- production. Interconnection of bacterial, yeast, and mammalian cell signaling enabled the construction of multistep signal transduction and processing networks as well as the design of synthetic ecosystems that mimic fundamental coexistence patterns in nature, including symbiosis, parasitism, and oscillating predator-prey interactions.biological circuit ͉ gene switch ͉ synthetic biology I ntercellular cross-talk either within or between organisms of the same or different species represents a fundamental communication process that is responsible not only for orchestrating vital functions within multicellular life forms but also for determining the manner in which different organisms coexist. Whereas the most sophisticated intercellular communication networks manage processes such as cellular differentiation and pattern formation during development or use hormonal and neural circuitries to adapt responses by individual organisms to endogenous and exogenous stimuli, higher-order ecosystems are organized by basic interaction patterns known as symbiosis, parasitism, or predator-prey interactions. Pioneering advances in the design and study of synthetic multicellular systems have focused entirely on cross-talk within the same species. Quorum-sensing prokaryotic variants, engineered to produce lactones and broadcast this cell-density signal across a population, have been used to establish automated population control (1), programmed pattern formation (2, 3), or metabolic information processing in bacteria (4). Similar intrapopulation communication has also been successfully engineered in yeast using Arabidopsis thaliana-derived signaling pathways (5). Although these monospecies networks probe the design principles of their more complex natural counterparts, their extrapolation to mammalian cell communities or interspecies and interkingdom cross-talk remains limited. Furthermore, the use of nonvolatile small-molecule inducers as the broadcast signal in existing synthetic intercellular cross-talk systems necessitates that both sender and receiver cells reside in the same liquid environment. Sender cells transgenic for expression of alcohol dehydrogenase (ADH) produced acetaldehyde, ...