The field of research in polycrystalline hexagonal boron nitride (PBN) has been enjoying extraordinary growth recently, in no small part due to the rise of graphene and the technical advancement of mass production in polycrystalline 2D materials. However, as the grain size in 2D materials can strongly affect their materials properties and the performance of their relevant devices, it is highly desirable to investigate this effect in PBN and leverage the service capability of PBN-based devices. Here we employ molecular dynamics simulations to explore the effects of grain size in PBN on its mechanical properties such as Young's modulus, yield strength, toughness, and energy release rate as well as its failure mechanism. By visualizing and comparing the tensile failure of PBN with and without a predefined crack we have shown that the grain size of PBN is positively correlated with its elastic modulus, yield strength and toughness. Through inclusion of a crack with varying length in the PBN samples, the energy release rate is determined for each grain size of PBN and it is concluded that the energy release rate increases with an increase in the average grain size of PBN. These findings offer useful insights into utilizing PBN for mechanical design in composite materials, abrasion resistance, and electronic devices etc.