Auxiliary Space Preconditioning of Finite Element Equations Using a Nonconforming Interior Penalty Reformulation and Static Condensation
Delyan Z. Kalchev,
Panayot S. Vassilevski
Abstract:We modify the well-known interior penalty finite element discretization method so that it allows for element-by-element assembly. This is possible due to the introduction of additional unknowns associated with the interfaces between neighboring elements. The resulting bilinear form, and a Schur complement (reduced) version of it, are utilized in a number of auxiliary space preconditioners for the original conforming finite element discretization problem. These preconditioners are analyzed and their performance… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.