Auxin is an endogenous small molecule with an incredibly large impact on growth and development in plants. Movement of auxin between cells, due to its negative charge at most physiological pHs, strongly relies on families of active transporters. These proteins import auxin from the extracellular space or export it into the same. Mutations in these components have profound impacts on biological processes. Another transport route available to auxin, once the substance is inside the cell, are plasmodesmata connections. These small channels connect the cytoplasms of neighbouring plant cells and enable flow between them. Interestingly, the biological significance of this latter mode of transport is only recently starting to emerge with examples from roots, hypocotyls and leaves. The existence of two transport systems provides opportunities for reciprocal cross-regulation. Indeed, auxin levels influence proteins controlling plasmodesmata permeability, while cell–cell communication affects auxin biosynthesis and transport. In an evolutionary context, transporter driven cell–cell auxin movement and plasmodesmata seem to have evolved around the same time in the green lineage. This highlights a co-existence from early on and a likely functional specificity of the systems. Exploring more situations where auxin movement via plasmodesmata has relevance for plant growth and development, and clarifying the regulation of such transport, will be key aspects in coming years.This article has an associated Future Leader to Watch interview with the author of the paper.