The phytohormone auxin acts as a prominent signal, providing, by its local accumulation or depletion in selected cells, a spatial and temporal reference for changes in the developmental program [1][2][3][4][5][6][7] . The distribution of auxin depends on both auxin metabolism (biosynthesis, conjugation and degradation) [8][9][10] and cellular auxin transport [11][12][13][14][15] . We identified in silico a novel putative auxin transport facilitator family, called PIN-LIKES (PILS). Here we illustrate that PILS proteins are required for auxin-dependent regulation of plant growth by determining the cellular sensitivity to auxin. PILS proteins regulate intracellular auxin accumulation at the endoplasmic reticulum and thus auxin availability for nuclear auxin signalling. PILS activity affects the level of endogenous auxin indole-3-acetic acid (IAA), presumably via intracellular accumulation and metabolism. Our findings reveal that the transport machinery to compartmentalize auxin within the cell is of an unexpected molecular complexity and demonstrate this compartmentalization to be functionally important for a number of developmental processes.Prominent auxin carriers with fundamental importance during plant development are PIN-FORMED (PIN) proteins [1][2][3]6,9,15 . PIN1-type auxin carriers regulate the directional intercellular auxin transport at the plasma membrane. In contrast, atypical family member PIN5 regulates intracellular auxin compartmentalization into the lumen of the endoplasmic reticulum and its role in auxin homeostasis was recently identified 15,16 . PIN proteins have a predicted central hydrophilic loop, flanked at each side by five transmembrane domains. We screened in silico for novel PIN-like putative carrier proteins with a predicted topology similar to PIN proteins ( Fig. 1a and Supplementary Fig. 2) and identified a protein family of seven members (Fig. 1b) in Arabidopsis thaliana, which we designated as the PILS proteins. In contrast to the similarities in the predicted protein topology, PIN and PILS proteins do not show pronounced protein sequence identity (10-18%), which limits the identification of PILS proteins by conventional, reciprocal basic local alignment search tool (BLAST) approaches. However, the distinct PIN and PILS protein families contain both the InterPro auxin carrier domain which is an insilico-defined domain, aiming to predict auxin transport function (http://www.ebi.ac.uk/panda/InterPro.html). The PILS putative carrier family is conserved throughout the whole plant lineage, including unicellular algae (such as Ostreococcus tauri and Chlamydomonas reinhardtii) (Supplementary Fig. 3) where PIN proteins are absent 16 , indicating that PILS proteins are evolutionarily older.PILS genes are broadly expressed in various tissues (Fig. 1c) and PILS2-PILS7 were transcriptionally upregulated by auxin application in wild-type seedlings (Fig. 1d-f and Supplementary Fig. 4), indicating a role in auxin-dependent processes. To investigate the potential function of the putative PILS auxi...