SummaryTo study the influence of auxin on the shift from radial to bilateral symmetry during monocot embryogenesis, the fate of young wheat (Triticurn aestivum L.) zygotic embryos has been manipulated in vitro by adding auxins, an auxin transport inhibitor and an auxin antagonist to the culture medium. The two synthetic auxins used, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), induced identical phenotypes. In the most severe cases, the shift from radial to bilateral symmetry was blocked resulting in continuous uniform radial growth. The natural auxin indole-3-acetic acid (IAA) induced the same phenotype. The effect of 2,4,5-T and 2,4-D depended on their concentrations and on the developmental stage of the isolated embryos. In the presence of 2,3,5-triiodobenzoic acid (TIBA), an auxin transport inhibitor, the overall embryo symmetry was abnormal. The relative position of the shoot apical meristem in comparison with the scutellum was anomalous. The quality of shoot apical meristem and the scutellum differentiation was altered compared with normal developed embryos. No root meristem was differentiated. The effect of TIBA depends on its concentration and on the developmental stage of the isolated embryos. By contrast, 2-(pchlorophenoxy)-2-methylpropionic acid (PCIB) which is described as an auxin antagonist, has no visible direct effect on the embryonic symmetry. These observations indicate that auxin influences the change from radial symmetry to embryonic polarity during monocot embryogenesis. A model of auxin action during early wheat embryo development is proposed.