Searching to improve quality of life of the patients that had sustained structural maxillary loss with the necessity of rehabilitation, either through surgery or obturator prosthesis, which is a therapeutic resource to minimize functional, esthetic and psychological impairments. This study evaluated the biomechanical behavior of an Okay Class II obturator prosthesis implant retained and ERA® system, analyzing the resultant stress on the soft and bone tissue. The finite element analysis was made with a digital model constructed from a computed tomography. Four implants were positioned on the left maxillae, on the following regions: lateral incisor, canine, second premolar and first molar, with the ERA® system positioned on the extremities of a metallic bar. The software used to create the BioCAD 3D model was Rhinoceros v. 5.0, including the CAD models from the implants, UCLAS and ERA® system. The ERA® CAD model was obtained from a microCT SkyScan 1176 Bruke images, on the BMP and TIFF format. The TIFF images were exported to the img2dcm software, converted in DICOM format and finally exported to the software Invesalius, were the STL mesh was created. All mesh were imported into the software Hyperworks v. 13.0 and the post-processing was visualized on Hyperview. The force applied was of 80N over the occlusal platform and of 35N over the incisal platform. A quantitative analysis was performed, corresponding to the maximum main stress, expressed in MPa. The obturator prosthesis suffered its maximum dislocation on the region with no bone support, with the bone resection line as fulcrum. Less tension forces were observed, when comparing to compression. The forces observed were favorable to maintain the implant retained prosthesis stabilization, with good distribution over the soft and bone tissues, suggesting that the ERA® retention system is suitable to Okay Class II maxillary bone loss.