Whey, a by-product of dairy industry, is a feedstock widely employed in the production of biodegradable films. However, these films present some limitations when considering the performance of synthetic polymers, especially biological transformation by decomposition. This work aimed to evaluate the effects of chitosan addition to whey-based films to improve films physical-chemical properties and resistance to microbial degradation. The results showed that there was an interaction effect between the chitosan concentration and the storage time for the physical-chemical properties of elongation at break and opacity. There was statistical difference among the formulations; however, for the moisture content and film thickness, there was no interaction effect between the formulation and the storage time. The films with 1.5 and 3.0 wt.% chitosan presented a yellowish hue, characteristic of the polysaccharide; this could also be detected by SEM analysis. The films presented an excellent biodegradability, being decomposed in about 8 days. Considering all chitosan contents tested had similar performances, the chitosan content of 0.15 wt.% was the one with the better cost-benefit relation.