Abstract:We study a variation of Bagchi and Datta's $\sigma$-vector of a simplicial complex $C$, whose entries are defined as weighted averages of Betti numbers of induced subcomplexes of $C$. We show that these invariants satisfy an Alexander-Dehn-Sommerville type identity, and behave nicely under natural operations on triangulated manifolds and spheres such as connected sums and bistellar flips. In the language of commutative algebra, the invariants are weighted sums of graded Betti numbers of the Stanley-Reisner rin… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.