2020
DOI: 10.37236/8564
|View full text |Cite
|
Sign up to set email alerts
|

Average Betti Numbers of Induced Subcomplexes in Triangulations of Manifolds

Abstract: We study a variation of Bagchi and Datta's $\sigma$-vector of a simplicial complex $C$, whose entries are defined as weighted averages of Betti numbers of induced subcomplexes of $C$. We show that these invariants satisfy an Alexander-Dehn-Sommerville type identity, and behave nicely under natural operations on triangulated manifolds and spheres such as connected sums and bistellar flips. In the language of commutative algebra, the invariants are weighted sums of graded Betti numbers of the Stanley-Reisner rin… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 40 publications
(71 reference statements)
0
0
0
Order By: Relevance