This study presents an innovative approach to predicting the water level in the San Juan River, Chocó, Colombia, by implementing two hybrid models: nonlinear auto-regressive with exogenous inputs (NARX) and long short-term memory (LSTM). These models combine artificial neural networks with smoothing techniques, including the exponential, Savitzky–Golay, and Rauch–Tung–Striebel (RTS) smoothing filters, with the aim of improving the accuracy of hydrological predictions. Given the high rainfall in the region, the San Juan River experiences significant fluctuations in its water levels, which presents a challenge for accurate prediction. The models were trained using historical data, and various smoothing techniques were applied to optimize data quality and reduce noise. The effectiveness of the models was evaluated using standard regression metrics, such as Nash–Sutcliffe efficiency (NSE), mean square error (MSE), and mean absolute error (MAE), in addition to Kling–Gupta efficiency (KGE). The results show that the combination of neural networks with smoothing filters, especially the RTS filter and smoothed Kalman filter, provided the most accurate predictions, outperforming traditional methods. This research has important implications for water resource management and flood prevention in vulnerable areas such as Chocó. The implementation of these hybrid models will allow local authorities to anticipate changes in water levels and plan preventive measures more effectively, thus reducing the risk of damage from extreme events. In summary, this study establishes a solid foundation for future research in water level prediction, highlighting the importance of integrating advanced technologies in water resources management.