In neuroscience, synaptic plasticity refers to the set of mechanisms driving the dynamics of neuronal connections, called synapses and represented by a scalar value, the synaptic weight. A Spike-Timing Dependent Plasticity (STDP) rule is a biologically-based model representing the time evolution of the synaptic weight as a functional of the past spiking activity of adjacent neurons. A general mathematical framework has been introduced in [37].In this paper we develop and investigate a scaling approach of these models based on several biological assumptions. Experiments show that long-term synaptic plasticity evolves on a much slower timescale than the cellular mechanisms driving the activity of neuronal cells, like their spiking activity or the concentration of various chemical components created/suppressed by this spiking activity. For this reason, a scaled version of the stochastic model of [37] is introduced and a limit theorem, an averaging principle, is stated for a large class of plasticity kernels. A companion paper [36] is entirely devoted to the tightness properties used to prove these convergence results.These averaging principles are used to study two important STDP models: pair-based rules and calcium-based rules. Our results are compared with the approximations of neuroscience STDP models. A class of discrete models of STDP rules is also investigated for the analytical tractability of its limiting dynamical system.