Laser speckle contrast imaging (LSCI) is a technique broadly applied in research and clinical settings for full-field characterization of tissue perfusion. It is based on the analysis of speckle pattern contrast, which can be theoretically related to the decorrelation time - a quantitative measure of dynamics. A direct contrast to decorrelation time conversion, however, requires prior knowledge of specific parameters of the optical system and scattering media and thus is often impractical. For this reason, and because of the nature of some of the most common applications, LSCI is historically used to measure relative blood flow change. Over time, the belief that the absolute blood flow index measured with LSCI is not a reliable metric and thus should not be used has become more widespread. This belief has resulted from the use of LSCI to compare perfusion in different animal models and to obtain longitudinal blood flow index observations without proper consideration given to the stability of the measurement. Here, we aim to clarify the issues that give rise to variability in the repeatability of the quantitative blood flow index and to present guidelines on how to make robust absolute blood flow index measurements with conventional single-exposure LSCI. We also explain how to calibrate contrast to compare measurements from different systems and show examples of applications that are enabled by high repeatability.