The ductility of FRP-reinforced concrete structures is reduced by the brittleness of FRP bars. To address this issue, this study employs the hybrid reinforcement of stainless steel (SS) and GFRP bars to enhance the ductility of concrete columns. A total of 21 axially compressed seawater and sea sand concrete (SWSSC) circular columns are fabricated, including 15 hybrid GFRP and SS bar-reinforced SWSSC (GFRP-SS-SWSSC) columns, 3 GFRP bar-reinforced SWSSC (GFRP-SWSSC) columns, and 3 SS bar-reinforced SWSSC (SS-SWSSC) columns. The test results are analyzed in terms of failure mode, load–axial displacement curve, bearing capacity, and ductility. Results show that GFRP-SWSSC columns suffer brittle failure, while GFRP-SS-SWSSC columns and SS-SWSSC columns demonstrate ductile failure characteristics. Furthermore, the hybrid reinforcement contributes to an improvement in the bearing capacity of the columns. A calculation equation for the bearing capacity of axially compressed columns was established, providing reasonable predictions of bearing capacities, with a design compressive strain of 2000 με for GFRP bars. It was found that hybrid reinforcement enhanced the ductility of GFRP-SWSSC columns. In addition, when the percentage of the SS reinforcement ratio reaches 50%, the ductility indexes of the GFRP-SS-SWSSC columns closely approach those of the SS-SWSSC columns.