A new type joint of Circular Tubed Steel-Reinforced Concrete (CTSRC) columns was designed in this paper. The structural characteristics, manufacturing process, and mechanical properties of raw materials of the new joint were introduced. In order to simulate the earthquake action, two joint specimens were subjected to low-cycle cyclic loading at the end of the column. Based on the in-depth study of the failure characteristics, load-displacement hysteretic curve, skeleton curve, ductility index, load-strain hysteretic curve in the core area of the joint, energy dissipation performance, strength and stiffness degradation performance, and shear deformation in the core area of the joint during the whole loading process, the seismic behavior of this new type of joint was investigated. The results show that the new joint has reasonable failure characteristics, high bearing capacity, good ductility, excellent seismic energy dissipation performance, and strong resistance to strength and stiffness degradation, which meets the seismic design principle of “strong joint and weak component” and is suitable for the results with special requirements for seismic performance. In addition, preliminary design recommendations were put forward. The research results of this paper can provide a theoretical basis for the application of this kind of new structure.