Recently, spherical and static flat space solitons (balls) and self-gravitating, everywhere regular, asymptotically flat solitons (stars) were constructed in an Einstein-Proca-Higgs model [1], where a complex vector field gains mass by coupling to a real scalar field with a Higgs-type potential. The Proca-Higgs model serves as a UV completion of a complex Proca model with self-interactions. Here, we construct and examine the mathematical and physical properties of rotating configurations. In particular, rotation allows horizon-bearing solutions, including stationary clouds surrounding Kerr black holes and their non-linear continuation into black holes with Proca-Higgs hair.