Abstract. In the inference attacks studied in Quantitative Information Flow (QIF), the adversary typically tries to interfere with the system in the attempt to increase its leakage of secret information. The defender, on the other hand, typically tries to decrease leakage by introducing some controlled noise. This noise introduction can be modeled as a type of protocol composition, i.e., a probabilistic choice among different protocols, and its effect on the amount of leakage depends heavily on whether or not this choice is visible to the adversary. In this work we consider operators for modeling visible and invisible choice in protocol composition, and we study their algebraic properties. We then formalize the interplay between defender and adversary in a game-theoretic framework adapted to the specific issues of QIF, where the payoff is information leakage. We consider various kinds of leakage games, depending on whether players act simultaneously or sequentially, and on whether or not the choices of the defender are visible to the adversary. Finally, we establish a hierarchy of these games in terms of their information leakage, and provide methods for finding optimal strategies (at the points of equilibrium) for both attacker and defender in the various cases.