Пожарский Д.А., Пожарская Е.Д. Контактные задачи для упругого неоднородного тела с цилиндрической шахтой // Вестник Пермского национального исследовательского политехнического университета.Донской государственный технический университет, Ростов-на-Дону, Россия О СТАТЬЕ АННОТАЦИЯ Получена: 27 июля 2018 г. Принята: 7 декабря 2018 г. Опубликована: 28 декабря 2018 г.Изучается осесимметричная задача упругого равновесия непрерывно неоднородного пространства с цилиндрической полостью, когда коэффициент Пуассона является произвольной достаточно гладкой функцией радиальной координаты, а модуль сдвига постоянный. При этом модуль упругости Юнга также является переменным по радиальной координате. Предложено общее представление решения, которое приводит к векторному уравнению Лапласа и скалярному уравнению Пуассона, правая часть которого зависит от коэффициента Пуассона. При помощи интегрального преобразования Фурье построены в квадратурах точные общие решения уравнений Лапласа и Пуассона. Получены интегральные уравнения двух осесимметричных контактных задач о взаимодействии поверхности полости (шахты) с жестким цилиндрическим вкладышем, вставленным в нее с натягом. В первой задаче контакт считается абсолютно гладким, для решения интегрального уравнения первого рода относительно контактного давления используется сингулярный асимптотический метод, эффективный для относительно длинных вкладышей. Во второй задаче учитывается шероховатость поверхности шахты, которая моделируется дополнительной прослойкой винклеровского типа, для решения интегрального уравнения второго рода применяется метод коллокации, эффективный для относительно коротких подкрепляющих вкладышей. Контактное давление на границе области контакта имеет характерную корневую особенность в первой задаче и принимает конечное значение во второй задаче. Для однородного материала отмечается близость интегральных характеристик контактных давлений, получаемых в обеих задачах, при малых показателях шероховатости (коэффициентах постели) в определенном диапазоне относительных длин вкладышей. Показано, что учет шероховатости снижает влияние неоднородности на распределение контактных давлений. Расчеты сделаны для случаев, когда коэффициент Пуассона и модуль упругости возрастают или убывают при удалении от поверхности полости.
© ПНИПУ
Ключевые слова:контактные задачи, теория упругости, неоднородное тело, цилиндрическая полость, асимптотический метод, шероховатость. Пожарский Дмитрий Александрович -д.ф.-м.н., проф., зав. каф., An axially symmetric elastic equilibrium problem is investigated for a continuously inhomogeneous space with a cylindrical cavity when Poisson's ratio is being an arbitrary fairly smooth function with respect to radial coordinate while shear modulus is constant. For this case Young's modulus is also variable with respect to the radial coordinate. A general solution is suggested which leads us to a vector Laplace equation and a scalar Poisson equation whose right-hand side depends on Poisson's ratio. As a result, exact general solutions of the Laplace and Po...