As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state. The immunosuppressive TME is the result of the crosstalk between the tumor cells and the different immune cell subsets, including macrophages, natural killer (NK) cells, dendritic cells (DCs), lymphocytes, myeloid-derived suppressor cells (MDSCs), etc. They are closely related to the anti-tumor immune status and the clinical prognosis of cancer patients. Increasing research demonstrates that SCs influence these immune cells and reshape the formation of the immunosuppressive TME via the secretion of various cytokines, chemokines, and other effector molecules, eventually facilitating immune evasion and tumor progression. In this review, we summarize the SC reprogramming in TME, the emerging role of SCs in tumor immune microenvironment, and the underlying mechanisms involved. We also discuss the possible therapeutic strategies to selectively target SCs, providing insights and perspectives for future research and clinical studies involving SC-targeted treatment.