Axonemal dyneins form the inner and outer rows of arms associated with the doublet microtubules of motile cilia. These enzymes convert the chemical energy released from adenosine triphosphate (ATP) hydrolysis into mechanical work by causing the doublets to slide with respect to each other. Dyneins form two major groups based on the number of heavy-chain motors within each complex. In addition, these enzymes contain other components that are required for assembly of the complete particles and/or for the regulation of motor function in response to phosphorylations status, ligands such as Ca, changes in cellular redox state and which also apparently monitor and respond to the mechanical state or curvature in which any given motor finds itself. It is this latter property, which is thought to result in waves of motor function propagating along the axoneme length. Here, I briefly describe our current understanding of axonemal dynein structure, assembly, and organization.