Researchers conventionally employ thermal imaging to monitor the health of animals, observe their habitat utilization, and track their activity patterns. These non-invasive methods can generate detailed images and offer valuable insights into behavior, movements, and environmental interactions. The aye-aye (Daubentonia madagascariensis), a rare and endangered lemur from Madagascar, possesses a uniquely slender third finger evolved for tapping surfaces at relatively high frequencies. The adaptation enables acoustic-based sensing to locate cavities with prey in trees to enhance their foraging abilities. The authors' previous studies have demonstrated some descent simulating dynamic models of the aye-aye's third digit referenced from limited data collected with monocular cameras, which can be challenging due to noisy and distorted images, impacting motion analysis adversely. In this proposed research, high-speed thermal cameras are employed to capture detailed finger position and orientation, providing a clearer understanding of the overall dynamic range. The improved biomimetic model aims to enhance tap-testing strategies in nondestructive evaluation for various inspection applications.