Bio-orthogonal chemistries
have revolutionized many fields. For
example, metabolic chemical reporters (MCRs) of glycosylation are
analogues of monosaccharides that contain a bio-orthogonal functionality,
such as azides or alkynes. MCRs are metabolically incorporated into
glycoproteins by living systems, and bio-orthogonal reactions can
be subsequently employed to install visualization and enrichment tags.
Unfortunately, most MCRs are not selective for one class of glycosylation
(e.g., N-linked vs O-linked), complicating the types of information
that can be gleaned. We and others have successfully created MCRs
that are selective for intracellular O-GlcNAc modification by altering
the structure of the MCR and thus biasing it to certain metabolic
pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do
the same for the core GalNAc residue of mucin O-linked glycosylation.
The most widely applied MCR for mucin O-linked glycosylation, GalNAz,
can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz.
This results in a mixture of cell-surface and O-GlcNAc labeling. We
reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would
lock the stereochemistry of this position in place, causing the MCR
to be more selective. After synthesis, we found that 4FGalNAz labels
a variety of proteins in mammalian cells and does not perturb endogenous
glycosylation pathways unlike 4FGalNAc. However, through subsequent
proteomic and biochemical characterization, we found that 4FGalNAz
does not widely label cell-surface glycoproteins but instead is primarily
a substrate for OGT. Although these results are somewhat unexpected,
they once again highlight the large substrate flexibility of OGT,
with interesting and important implications for intracellular protein
modification by a potential range of abiotic and native monosaccharides.