In this work, designed growth of aluminum (Al)/aluminum-doped zinc oxide (AZO), AZO/Al/AZO, and AZO/Al multilayer electrodes by radiofrequency (RF) magnetron sputtering on glass substrates was studied. The microstructures, optical properties, and electrical characteristics of the multilayer electrode thin films were analyzed, their structural denseness and thickness were observed by field-emission scanning electron microscopy (FE-SEM), and their crystal orientation was identified by x-ray diffraction (XRD). The resistivity and transmittance of the films were measured by four-point probe and UV-Vis-NIR spectrophotometer, respectively. The resistivity of the AZO/Al/AZO multilayer electrode thin film was 1.55 X cm. The average transmittance of the AZO/Al/ AZO thin film over wavelengths from 400 nm to 800 nm was much better than that of other thin films, since Al nanoparticles distribute in the AZO thin film during the sputtering process, as observed by high-resolution transmission electron microscopy (HRTEM). In addition, the figure of merit of the AZO/Al/ AZO trilayer film was much larger than those of the other structures.