The cause of type I diabetes continues to be a focus of investigation. Studies have revealed that interferon (IFN)-α in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type I diabetes. However, how IFN-α contributes to the onset of type I diabetes is obscure. In this study, we found that 2-5A dependent RNase L (RNase L), an IFN-α-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type I diabetes. By using RNase L deficient, rat insulin promoter (RIP)-B7.1 transgenic mice which are more vulnerable to environmental harmful factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin (STZ), a drug which can artificially induce type I-like diabetes in experimental animals. Immunohistochemical staining showed that the population of infiltrated CD8+ T-cells was remarkably reduced in the islets of RNase L deficient mice, suggesting that RNase L may contribute to type I diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas in induced conditions. Our findings provide new insight into the molecular mechanism underlying β-cells destruction and may suggest novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.