Primary immunodeficiency disorders (PIDs) are a heterogeneous group of genetic conditions profoundly impacting immune function. The investigation spans various PID categories, offering insights into their distinct pathogenic mechanisms and clinical manifestations. Within the adaptive immune system, B-cell, T-cell, and combined immunodeficiencies are dissected, emphasizing their critical roles in orchestrating effective immune responses. In the realm of the innate immune system, focus is directed toward phagocytes and complement deficiencies, underscoring the pivotal roles of these components in initial defense against infections.
Furthermore, the review delves into disorders of immune dysregulation, encompassing hemophagocytic lymphohistiocytosis (HLH), autoimmune lymphoproliferative syndrome (ALPS), immune dysregulation, polyendocrinopathy, enteropathy, and X-linked(IPEX), and autoimmunity polyendocrinopathy candidiasis-ectodermal dystrophy(APECED), elucidating the intricate interplay between immune tolerance and autoimmunity prevention. Diagnostic strategies for PIDs are explored, highlighting advancements in genetic and molecular techniques that enable precise identification of underlying genetic mutations and alterations in immune function. We have also outlined treatment modalities for PIDs, which often entail a multidisciplinary approach involving immunoglobulin replacement, antimicrobial prophylaxis, and, in select cases, hematopoietic stem cell transplantation. Emerging therapies, including gene therapy, hold promise for targeted interventions.
In essence, this review encapsulates the complexity of PIDs, emphasizing the critical importance of early diagnosis and tailored therapeutic interventions. As research advances, a clearer understanding of these disorders emerges, fostering optimism for enhanced patient care and management in the future.